
Notes on the Topology of Vector Fields and Flows*

Daniel Asimov t

Report RNR-93-003, February 1993

Abstract

These notes describe some of the most basic definitions and results in the topology of vector

fields and flows. These are intended to provide a framework for approaching vector field and

flow visualization. The topological viewpoint embodied in these notes owes a good deal to the

pioneering work of Henri Poincar_ and George Birkhoff, but above all to the more recent work of
Stephen Smale, beginning with his seminal 1967 paper, Differentiable dynamical systems (Bull.

Amer. Math. Soc. 73 (1967), 747-817). Another excellent reference for this material is the
book by M.C. Irwin, Smooth Dynamical Systems (Academic Press, 1980).

*Originally presented at Visualization '92, Boston, Massachusetts, October 20, 1992.
tNumerical Aerodynamic Simulation (NAS) Systems Division, MS T045-1, NASA Ames Research Center, Moffett

Field, CA 94035-1000 (asimov_nas.nasa.gov). The author is an employee of Computer Sciences Corporation. This
work is supported through NASA Contract NAS 2-12961.



Notes on the Topology of
Vector Fields and Flows

Daniel Asimov

Vector fields are ubiquitous in science and
mathematics, and perhaps nowhere as
much as in computational fluid dynamics
(CFD). In order to make sense of the vast
amount of information that a vector field

can carry, we present in these notes some
important topological features and con-

cepts that can be used to get a glimpse of
"what a vector field is doing. _

1 Vector Fields

A vector field arises in a situation where,
for some reason, there is a direction and

magnitude assigned to each point of

space.

The classic example of a vector field in the
real world is the velocity of a steady wind.
We will draw a vector field as having its
point of origin at the point x to which it is
assigned. In this way a vector field resem-

bles a hairdo, with all the hair being per-
fectly straight

Figure 1: Vector Field (unnormalized)

A vector field is, mathematically, the

choice of a vector for each point of a region

of space. In general, let U denote an open
set of Euclidean space R n. (We will usu-
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ally be interested in the casesn = 2 and
n - 3.) Then a vector field on LTis given by
a function f : U --# R n. We will assume that
a vector field f is at least once continu-

ously differentiable, denoted C 1.

More generally, one can also consider a
phenomenon such as real wind, which can
be represented by a vector field which
changes from moment to moment. The
mathematical name for this is time-

dependent vector field. Mathemati-
cally, a time-dependent vector field on an

open set U in R n is a function of the form
f: U × J --# R n, where J is some time inter-
val a _ t < b.

Think of a time-dependent vector field as
a movie, each frame of which is an ordi-
nary vector field.

In these notes we will give more empha-
sis to steady (non-time-dependent) vector
fields.

Figure 2: Normalized Vector Field

2 Differential Equations and Solu-
tion Curves

A differential equation (or more pre-
cisely, an autonomous, ordinary differen-
tial equation) defined on an open set LTof
Euclidean space Rn is an equation of the
form

dx
=f(x)

where x : I -_U denotes an unknown curve

parametrized by some (as yet unknown)
interval I containing 0, and f: ToT-_ R n is
C 1.

Given any point x0 eU, we may assume an

"initial condition" of the form x(0) = x0.
With this condition, the Existence Theo-
rem for solutions of autonomous O.D.E.'s
states the following: There exists a num-
ber c > 0 and a solution x : (-c, c) -_ U. In

other words, x(0) = x0 and, for each t in
the interval (-c,c), we have x'(t) = f(x(t)).

This solution is unique in that any curve
y : (-c, c) _ U which also satisfies the ini-

tial condition y(0) = x0 and the equation
y'(t) = f(y(t)), must in fact be the curve x.

Think of f(x) as representing the velocity
of a steady wind at the point x. Then the
solution curve x(t) represents the hypo-

thetical trajectory of a massless particle
released at time = 0 at the point x0.

One may also consider non-autono-
mous differential equations. These are
equations of the form

dx
-_ = f(x, t)
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where x : I --_ U once again denotes an
unknown curve parametrized by some
interval I. However, in this case,
f: U x J -_ R n is a C 1 function taking not

one but two arguments. (Here J repre-
sents some interval of time.)

To say that x isa solutionof a non-autono-
mous O.D.E. likethis means that x must

satisfythe initialcondition,x(t0) - x0.
And there must existsome number c > 0

such that foreach t lyingin the interval

(tO - c,to+ c),we have x'(t)= f(x(t),t).
(Note that unlike the interval(-c,c)in the

autonomous case, which must contain 0,
thisintervalmay omit 0 but must contain

the value to.)

The classicexample of such an equation is
again wind: real wind, which varies with

time. The function f(x,t)may be thought

of as representing the velocityofthe wind
at locationx and time t.And the solution

curve x represents the trajectory of a par-
ticle that is released in the wind at

time = to at the point x(_

$ Phase Space

In addition to concrete geometrical appli-

cations,one of the most important uses of
differentialequations isto understand the

evolulon of the stateof an abstractphysi-
cal system as time progresses.For exam-

ple, consider the hinged roof-shaped lid

atop some public trashcans. Its physical

statecan be described by two coordinates:

the angular position of the lid,and the

angular velocitywith which itisrotating

about itshinge. The abstract representa-
tion of all states is actually a cylinder,

because the angular positionrepeats after

2yC. This cylinder, then is the phase
space for this problem. The differential

equation governing the physics of the
trashcan lid provides a vector field on this
phase space.

Trajectories of this vector field decribe the

change in state that the lid would experi-

ence form any initial position. Physically,
this is the classic "pendulum with fric-
tion."

Figure 3: Pendulum with Friction

In this figure the horizontal coordinate
represents the angular position (which
has been unrolled to lay the cylinder out
fiat; hence the "phase portrait" above
repeats with horizontal period 2yc). The
vertical coordinate represents the angular

velocity, of the trashcan lid. For any initial
condition---i.e., a point of this phase
space--- the unique trajectory though that
point shows the time evolution of that ini-

tial condition. It is apparent from the fig-
ure that, for almost all initial conditions,

the trajectory eventually spirals into a
stationary point of the vector field. This
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corresponds to going through some finite

number offullrevolutionsin angular posi-

tion,and then swinging back and forth,
approaching the stationary equilibrium
statein the limit.Anyone who has scien-
tificallyexperimented with this kind of

trashcan knows that thisisexaactly what
happens.

4 Vector Fields _ O.D.E.'s

In a mathematical sense, vector fields and

differential equations may be considered
to be the same thing. More precisely, time-
independent vector fields are the same
thing as autonomous ordinary differen-
tial equations.

This is simply because each one is deter-

mined by a function f :U _ R n. Given a

vector field defined by a function

f: U --#R n, one may write the differential

equation given by dx/dt = f(x).And con-

versely,given a differentialequation
dx/dt= f(x),one may extract the vector
field f(x).Thus both vector fields and

autonomous ordinary differentialequa-
tionscarry the same information.

And similarly, time-dependent vector

fields may be thought of as the same thing

as non-autonomous differential equations:
each one is determined by a function
f:U xJ_ R n.

5 Flows

Vector fields and differential equations
give rise to families of transformations of
space called flows.

Let us introduce new notation forthe tra-

jectory of a point p: the solution curve

which takes the value p at time = 0 willbe

denoted by ap.

These trajectoryfunctionsCtpmust, where
defined,satisfythe fundamental consis-

tency condition: Let p eU and lets and
t denote any two lengths of time.Then the

result of following the trajectoryof p for

time s,and then followingthe trajectoryof

that resultfor time t,isexactly the same

as the resultof followingthe trajectoryof
p fortime s + t.

In mathematical language: Let q denote

the point C_p(S),the resultof followingthe
trajectoryof p for time s. Then we must

have aq(t)= c_p(s+ t).

It is useful to unify the trajectoryfunc-

tionsC_pforallp intoone singlefunctionof

two variables.For any p eU and t e Ip
define_(p,t)to be c_(t).Now _(p,t)isjust
the result of followfng the trajectoryof p
fortime t.

Then the consistency condition becomes

just
_ (¢ (p, s) , t) = ¢(p,s+t)

wherever it is defined. (Note that this

holds for negative as well as positive val-
ues of s and t.) We also have

(p, O) = p for all p in U.

By the way, the existenceand uniqueness
theorem for O.D.E.'salso tellsus that the

flow function¢ ofthe two variablesp and t
must be continuously differentiable,or C I.

Now we can see that for each fixedvalue

oft,there isa mapping of U to itselfwhich

takes p to _p, t).This mapping is olden

denoted by _t. Thus, by definition,we

4 of21 Notes on the Topology ofVector Fields and Flows



have @t(P) = ¢(P, t) wherever this is
defined.

Finally, we can define what is meant by
the flow associated with a differential

equation: This is the family of all the
transformations ¢t : U _ U. The consis-
tency condition for this flow can now be

stated as _. _t _- _+t for all s and t for
which this is defined. Due to the equiva-
lence of differential equations and vector
fields, the flow of the differential equation
dp/dt= f(p) is also called the flow of the

vector field f(p).

No convergent trajectories of a C 1
vector field

Let a be any number. Then the curve
given by t -_ (t, (t - a) 3) is a trajectory of
this vector field. But since V(x, 0) = (1, 0)
for all x, it is clear that the x-axis itself is

also a trajectory, via the curve given by
t --# (t, 0). These two trajectories cross
each other.

At the point where they cross, two distinct
trajectories start from the same initial

conditions.This violates the uniqueness of
solutions which must hold for C 1 vector
fields.

Figure 4: Vector Field V(x, y) = ( 1, 3y 2/3)

The uniqueness of solutions to O.D.E.'s
tells us important information about the
configuration of trajectories of a C 1 vector
field: Each point p of the domain U lies
on one and only one trajectory.

In particular, this tells us that trajectories
can never truly converge, cross each other,
or branch. (Two trajectories may appear
to converge, for example, if as time _ oo

both trajectories approach the same point.

But this can only occur when that point is
in fact its own trajectory: a stationary
point.)

It is enlightening to see what can happen

when we drop the condition that the vec-
tor field be continuously differentiable. An
interesting example (Fig. 4) can be con-
structed if a vector field is defined on all of

R 2 _a V(x, y) = ( 1_ 3y2/3). (The derivative
b(3y_)/'dy is 2y -u_, which does not exist
when y = 0, so this vector field is not con-
tinuously differentiable. )
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The flow of a linear vector field

In the case where a vector field on Rn is

defined by a matrix, then there is a simple
explicit formula for the flow of V.

Suppose V(p)= Lp at each point p, where L
is some n x n matrix. Then the flow of V is

given by a very simple and beautiful for-
mula: _(p, t) m e_p. Here the exponential
e M of an n x n matrix is the n x n matrix

defined as

k-O

6 Classification of Trajectories

We are now in a position to make an ele-
mentary classification of the kinds of tra-

jectories that can occur. We may think of a
trajectory as a mapping x: R _ Rn from
the real numbers to Euclidean space 1.
Then one of three conditions must
hold:

1) The mapping is one-to one. In this case
the trajectory is a curve that never
returns to where it has been. This is called

a regular trajectory. (More about these
later.)

2) The mapping has a least period > 0, say
t O, after which it repeats exactly where it
has been before: x(t + to) = x(t) for all t.
The trajectory must form a simple closed
curve in Euclidean space. Such a trajec-

1. In these notes, we will often not distinguish trajectories which
arise from different initial conditions but constitute the same set
of points.

tory is called a closed orbit. (More about
these later.)

3) The trajectory stays put. The entire tra-

jectory is a single point: x(t) = p for all t.

This happens at locations where the vec-
tor field is 0, and nowhere else. This kind

of trajectory is called a stationary point.
(More about these later.)

Terminology: Other terms for a station-
ary point include equilibrium, singular-
ity, fixed point, and zero. (It is also

sometimes called a "critical point," but
this term is perhaps best reserved for its
original definition: where the derivative of
some mapping to R 1 vanishes.) A vector
field without stationary points is called
non-singular.

7 Some Essential Concepts of
Topology

Some fundamental concepts of topology in
Euclidean space Rn that will be used or
assumed here include the following:

An £-neighborhood of a point p for a
number, denoted Ne(p), is the set of all
points at a distance < £ from p.

A point p is a limit point (or accumula-
tion point) of a set X if for every £ > 0,
NE(p) - {p) contains at least one point of
7_

An open set is any set that is an arbi-

trary union of sets of the form Ne(p). Note
that the empty set is open, as is the entire
space Rn.
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A closed set is any set X whose comple-
ment R n - X is open. Equivalently, a
dosed set is any set which contains all its
limitpoints.

A neighborhood of a point p is any open
set containing p.

A set in Rn is compact if it is closed and
bounded.

A set X is dimconnected if there exist two

disjoint open sets, each of whose intersec-

tion with X is non-empty. A set is con-
nected if it is not disconnected.

Intuitively, X is connected if it is all in one
_piece. _

A sequence Pl, P2,...,Pi,... approaches
the limit p if for every E > 0, there exists
an integer M -- M(e) > 0, such that i _> M

implies that Pi lies in NE(p). This situation
is denoted by lira Pi = P. (If you are not
familiar with this definition, it is worth
taking the time to understand it.) Note
that a sequence can approach at most one

limit, although a set of points {Pi} may
have many limit points.

A mapping f : U --) V between two open
sets U and V is continuous if whenever

there are points {Pi} and p in U forwhich

liraPi - P, then liraf(Pi)= f(P).(In brief:a

continuous function is one which pre-
serves limits.)

A homeomorphism or topological
equivalence between two sets X and Y is
a mapping h : X --) Y that is continuous,
one-to-one, onto, and has continuous
inverse h"I.Topology is concerned with

properties of shapes that remain

unchanged under homeomorphism.

Two vector fields or flows are called topo-
logically equivalent (or homeomorphic)
if there is a homeomorphism between

their domains which carries trajectories to
trajectories, and preserves the direction of
increasing time.

Fundamental theorem of OA).E.'s

In a sense, closed orbits and stationary

pointsare much rarer than regular trajec-

tories,at leastformost vectorfields.Ifp is

a point on a regular trajectory,we can
state exactly what nearby trajectories

look likein some neighborhood of p.

Theorem: If p is a point on a regular
trajectory,then there isa neighborhood U

of p and a homeomorphism h : U _ R n

which carries each piece of a trajectory

lyingin U onto a straightlinein R n paral-
lelto the x-axis.

In plain English, this theorem says that

near a point of a regular trajectory,
trajectories fill up space in the same

way that parallel lines do, topologically
speaking.

8 Alpha- and Omega-limit Sets

We wish to define how a regular trajectory

x(t) behaves as t approaches infinity. So
we define the omega-limit set of the

trajectory x to be all those points of the
domain which are limits of a sequence of

the form x(t) for values of t approaching
infinity. We denote this set by (_(x).

Example: Consider a vector field in which

one trajectory x approaches a closed orbit

Notes on the Topology ofVector Fieldsand Flows 7 of21



by spiraling around it closer and closer.
Then the entire closed orbit is the omega-
limit set of x.

Exaraple: Consider the vector field V(x,y)
- (-x, y) in the plane. The trajectory x(t)
satisfying the initial condition x(0) =

(x o, __p) is _iven by the curve x(t) =
(xoe , yoe_). Thus each trajectory lies on a
hyperbola of the form xy = k for some
value of k (and this includes the degener,
ate hyperbola xy = 0 as well).

Clearly, the only trajectories having a
non-empty omega-limit set are those lying
on the x-axis.

Similarly, the alpha limit set, of a trajec-
tory x(t), denoted by a(x), is defined as
the omega-limit set of the reversed trajec-
tory x(-t). In the above example, only tra-
jectories lying on the y-axis have a non-
empty alpha-limit set.

Suppose there is a number t O for which
the trajectory x(t) remains inside a com-

pact subset of the domain for all t _> t o.
Then the following must be true concern-

ing the omega-limit set of x:
1) _(x) is non-empty
2) c_(x) is closed

3) c_(x) is invariant by the flow (i.e., it is
a union of trajectories), and
4) a_(x) is connected.

9 Limit Cycles

The limit cycle is an important topological
feature of some vector fields.

Definition: A limit cycle of a vector field
V is a closed orbit C of V that is contained

in a(x) or _)(x) for some trajectory x _ C.

Here is an important result about limit

cycles in the plane:

Theorem (Poincard-Bendixson): Suppose
V is a vector field in R 2, and let x be a tra-
jectory of V. Suppose that _(x)is non-
empty, compact, and contains no station-
ary point. Then c_(x) must be a closed
orbit.

What makes the limit cycle particularly
important is that it will persist even after
a small perturbation of the vector field.

Theorem-" Let V be a vector field having a
limit cycle C. Let V 1 be a sufficiently small
(in the C O sense) perturbation of V. Then
V 1 will also have a limit cycle.

10 Classification of Isolated Station-

ary points

A stationary point is calledisolated ifis

not a limit point of other stationary

points.Ifthe point p isan isolatedstation-
ary point of a vector field

V(x 1, x2) = (V1(x1_2),V2(x1,x2)) , or
V(xl,x2,xs)--(V1(xl,x_xs),V2(xl.x2.xs),Vs(x1_xz,Xs))'
then we can further investigatethe struc-

ture ofthe trajectoriesnearby by examin-
ing the so-called Jacobian matrix of

partial derivatives,JV = (bVi/_xj).This
matrix will of course be 2)<2 in the 2-

dimensional case and 3×3 in the 3-dimen-
sionalcase.

When we evaluate the Jacobian matrix at

the stationary point p, we obtain a matrix

whose values are numbers. As with any
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such matrix, we may calculate its eigen-
values and eigenvectors.

Definition: A stationary point is called
hyperbolic if the real parts of the eigen-
values of itsJacobian are allnon-zero.

A hyperbolic stationary point must neces-
sarily be isolated.

Theorem: If p is a hyperbolic station-
ary point, then the trajectories near p are
determined up to topologicalequivalence
by the number ofpositiveand the number

of negative real parts that the various
eigenvalues have.

Just how often does this "non-zero real

part" conditionhold? Fortunately forus,it

is the rule and not the exception. In a
sense that can be made precise,thiscondi-

tionholds with probability= 1.

This theorem is a remarkable application
of topology to the local classification of

stationary points.

According to thistheorem, we can catego-
rize_allbut a set ofmeasure 0" ofthe iso-

latedstationary points in 2 dimensions in

terms of just 3 kinds: both eigenvalues
with positivereal part; one positiveand

one negative, and both negative. Simi-
larly,in 3 dimensions there are 4 distinct

types (exceptforthat setofmeasure 0).

Definition: A sink is an isolated station-

ary point p each of whose nearby trajecto-

ries x satisfies c0(x) - (p). (Alternatively,
for each nearby trajectory x, the limit of
x(t) as t --> co is p.)

Definition: A source of a vector field V is

an isolated stationary point p which is a
sink of the reversed field, -V.

11 Geometric Classification

Hyperbolic Stationary points

of

Let V denote a vector field with a hyper-

belic stationary point p, at which the Jaco-

bian matrix is JV = (c)V_xj).

The 2-dimensional case:

The eigenvalues of JV are the roots of the

quadratic polynomial P(k) defined by P(k)
= det(J - kI). Since this is a quadratic
polynomial with real coefficients, the roots
are either both real or else they are com-

plex conjugates of each other (say K + Li
and K - Li, where K and L are real). We
consider the cases:

I. Both rootsreal:

a.Both positive:
source

b.Both negative:
sink

c.Opposite signs:
saddle

2. Complex conjugate roots:
a. K positive:

spiral source
b. K negative:

spiral sink
Note: The sense of the spiralin case 2.can

be determined from the sign of curl(V)at

the point p. If curl(V) (thought of as the

scalarquantity _V1/c}x2 - _V2/_x 1)ispos-
itive,then the swirl will be counterclock-
wise, and vice versa.

The 3-dimensional case:
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The eigenvalues of JV are the roots of the

polynomial P(_,) defined by P(_.) =

det(J - _.I). Since this is a cubic polyno-
mial with real coefficients, the theory of
equations tells us that there axe either 3
real roots, or I real root and a pair of com-
plex conjugate roots. Case by case:

1. All 3 roots real:

a. All positive:
8ourcM_

b. 2 positive, I negative:
saddle (2 dims. out, 1 in)

c. I positive, 2 negative:
saddle (1 dim. out, 2 in)

d. All negative:
sink

2. 1 real, 1 complex conjugate pair
(again, say K + Li and K - Li, where K
and L are real):

I) Real root positive:
a. K positive:

spiral source
b. K negative:

spiral saddle (1 out, 2 dims. in )
II) Real root negative:

a. K positive:

spiral saddle (2 dims. out, I in)
b. K negative:

spiral s _ k

12 What is So Important About
Hyperbolic Stationary Points?

If V is a vector field with a hyperbolic sta-
tionary point at the point p, then this is

stable in the following sense: Suppose V 1
is another vector field which is sufficiently

_C 1 close" to V in a neighborhood of p.

(This means that V 1 and its first
derivatives are close to the corresponding

values of V near p.) Conclusion: the vector

field V 1 must also have its own stationary
point at some point Pl near p, and further-

more the trajectories of V 1 near Pl
must be topologically equivalent to

the trajectories of V near p. In brief: a
local perturbation of a hyperbolic station-

ary point does not change the topology.

This kind of stability is called local
structural stability.

This is a very important property of
hyperbolic stationary points. It means
that they will show up independent of
small errors of measurement as invari-
ably occur in the real world.

Conversely, any isolated stationary
point possessing local structural sta-
bility must be hyperbolic.

13 Area- or Volume-Preserving Vec-
tor Fields

In many applications--for example,
hydrodynamics---the vector fields encoun-

tered will often be volume-preserving. (In
this context we use the term "volume" to

mean both ordinary volume in 3 dimen-

sions and area when we are referring to 2
dimensions.)

By definition, a vector field is volume-

preserving when its flow _t carries any

open set S in its domain to a set _(S) of
the same volume, for all times t.

The condition for a vector field V to pre-
serve volume is that div(V) = 0. (In 2D
this means _V1/_Xl+ _V2/_x 2 - 0; in 3D it
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means o'_#'l/O_xz+_V2/o_ 2 + o_V3/o_3 - 0.).
For this reason, the term divergence-
free is used as a synonym for volume-pre-
serving.

A fundamental topological consequence of
being volume-preserving is that no open
set of finite volume may ever flow to a
proper subset of itself by the flow,
whether in positive or negative time.

This strong condition immediately rules
out both sources and sinks from occurring
in volUme-preserving vector fields. But it
is easy to see that any type of saddle is
possible in a volume-preserving field.

Centers

In 2 dimensions, there is another impor-
tant kind of isolated stationary point, a
center. A center is a stationary point in 2
dimensions for which all nearby trajec-
tories are closed orbits. The simplest
example of a center is the point (0, 0) in

the vector field given by V(x, y) = (-y, x)
(uniform counterclockwise rotation).

The eigenvalues of the Jacobian matrix at

a center must be pure imaginary.

The converse is not true in general: If an

arbitrary 2-dimensional vector field has
an isolated stationary point with pure
imaginary eigenvalues of the Jacobian, it
is not necessarily a center. It could also be
a source or a sink (due to non-linear terms
of its Taylor series).

However, if an area-preserving vector
field has an isolated stationary point with
pure imaginary eigenvalues of the Jaco-
bian, then it must be a center (since the
only alternatives--source or sink---are

excluded because they cannot preserve
area).

A center is important because it possesses
constrained local structural stabil-

ity: Any area-preserving vector field that
is sufficiently close (in the C 1 sense) to one
having a center, must also have a center.

Thus if the only vector fields that can
arise in some 2-dimensional situation

must be area-preserving, then the only
isolated stationary points that can happen
are 1) saddles and 2) centers.

14 The Poincard Map

By the use of the Poincar_ map, we may

reduce the topology of surrounding trajec-

tories to a question of understanding a
map ofa smaller disk to a larger disk.

We will consider a vector field in 3 dimen-

sions. The 2-dimensional case, being sim-
pler, will follow from this.

Choose any point p belonging to C, and
consider any open disk D whose intersec-

tion with the circleC is the point p, and

which is not tangent to the circleC at p.
(In the 2-dimensional case we would use

an arc instead of a disk.)We may assume
that D is chosen so that the vector fieldis

nowhere tangent to D. Such a disk (orarc,
ifin 2 dimensions) is called a local sec-
tion of the flow.

By the continuityof solutionsto C z differ-

ential equations, there must exist a

smaller disk D O contained in D and con-

tainingp, with t_e followingproperty"
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For any point q in Do, there is a
smallest value of t = t(q) > 0 such
that following the trajectory of p for
time t(q) results in a point q' that is
once again in the larger disk D (but

not necessarily in DO).

The Poincar_ map (or first-return

map) of the closed orbit C is the mapping
f: D o ---) D that takes any point q of D o to
the point q' described above. If V is a C 1

vector field (as we have usually been
assuming), then the Poincard map f is also
continuously differentiable.

This Poincar_ map f must carry the origi-
nal point p to itself. This is because f(p)
must lie on D, and it also lies on the closed

orbit C through p; the intersection of C
and D is (p_ by assumption.

equivalent (in fact, differentiably equiva-
lent).

The Poincar_ map is important because it
contains all the information about the
topology of trajectories close to the closed
orbit C. (In principle, given the Poincar_
map of a closed orbit, one could recon-
struct the topologicalstructure of trajecto-
riesnear C.) But it is simpler to think
about a mapping between two disks than
all that spaghetti.

Since f has a fixed point at p, we can again
look at the Jacobian matrix, not of a vec-
tor field, but of the mapping f. The Jaco-
bian of a mapping f is again defined as the
square matrix of partial derivatives, in

this case Jf = (_fi/_xj). (In order for this to
make sense, we need to pretend that we
have given 2-dimensional coordinates to

Figure 5: The Poincar_ Map the disk D.)

Important fact about eigenvalues:
Regardless of the choice of coordinates

used for the disk D, (which.will affect the
Jacobian matrix Jf), the elgenvalues of
the matrix Jf will always be the same for a
given closed orbit.

And so once again we can play the eigen-
value game. Analogous to the terminology

for station.ary, points, we call a closed orbit
hyper .boh.c if the eigenvalues of Jf lie off
the unit circle in the complex plane.

As in the case of hyperbolic stationary
Important fact about Poincar6 maps:

Regardless of the choices involved in the
definition (the point p, the disks D and

DO), any two resulting Poincar_ maps of

the same closed orbit will be topologically

points, hyperbolic closed orbits are

locally structurally stable: a small per-
turbation of the vector field near a hyper-
bolic closed orbit will result in a
topologically equivalent vector field.
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And conversely: if any closed orbit of an

arbitrary vector field is locally structur-
ally stable, then it must be hyperbolic.

(Note how this differs from hyperbolicity
for stationary points, where the eigenval-
ues of the appropriate Jacobian matrix JV
need to lie off the imaginary axis. The
unit circle is the image of the imaginary
axis under the complex exponential map-
ping, and this reflects the exponential
relationship between vector fields and
mappings.)

Once again, the eigenvalues are the roots
of a polynomial: in this case the polyno-
mial is det(Jf- kI). Since Jf is a 2 × 2

matrix, this polynomial is just a quadratic
polynomial, with real coefficients.

Hence the roots are either both real, or
else complex conjugates. In addition, the
product of the eigenvalues must be posi-
tive, since Euclidean space is orientable.
(This is the 3-dimensional version of the
fact that a M6bius band cannot be a sub-

set of the plane.) So if both eigenvalues
are real, they must have the same sign.
We consider the possibilities :

Hyperbolic Closed orbits in 3D
(Root I and Root 2 refer to the two eigenval-
ues; the numbering is of no significance)

lo Both roots real:

a. _oot I |> 1, _toot 2 [> I:
source closed orbit

b. _,_ot 1 [< 1, _oot2 [< 1:
sink closed orbit

c. _ot 1[>1, _tOot 21<1:

i) both roots positive:
saddle closed orbit

ii) both roots negative:
twisted saddle closed orbit 1

2. Complex conjugate roots:
a. Both outside the unit circle:

spiral source closed orbit
b. Both inside the unit circle:

spiral sink closed orbit
And for completeness, we also mention

the rather simple classification of hyper-
bolic closed orbits in 2 dimensions, where
the Jacobian matrix is only 1 × 1, and that

single element is the lone, necessarily
real, eigenvalue of Jf:

Hyperbolic Closed orbits in 2D

1. _oot [> 1:

source closed orbit
2. _ot [< 1 :

sink closed orbit

Intrinsic vs. Extrinsic Topology:

Topology is often called upon to describe a
situation where one space X is sitting
inside ("embedded in s) another space Y. In
this case, a distinction is made between-

properties that depend only on X, and
those that come about from the manner

in which X is sitting inside Y.

Those properties depending only on X are

called intrinsic, and those depending on

1. An additional complexity is possible in the case of
saddle closed orbita which cannot occur for saddle ste-

tionary pointa: twisting. This is detectable by the sign of
the eigenvalues (which must be the same sign by a pre-
vious comment). This tells us that the eigendirections
are taken by the Poincar_ map to their opposite direc-
tiona. The only way this can be accomplished by trajecto-
ries near a closed orbit is by twisting.
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the manner in which X sits inside Y are
called extrinsic.

Extrinsic Topology of Closed Orbits:

A. Twisting due tothe embedding:

In the case of a closedorbit,we may think

ofX as representing a small neighborhood

N(C) of the dosed orbitC, and Y as repre-
senting Euclidean space R 3.

Whether or not C isa twisted closedorbit,
the neighborhood N(C) may or may not be

embedded in R 3 with twisting due solely

to the choice of embedding. This extrin-

sic twisting can occur in any integermul-
tipleof 360 ° twists.

B. Knotting:

Any simple closed curve in R 3 (which any

closed orbitmust be!)isintrinsicallytopo-

logicallyequivalent to any other simple

closedcurve,purely as a topologicalspace.

From the extrinsic point of view, however,

there are many ways in which a simple
closed curve can be embedded in R 3.Two

simple closed curves C I and C 2 in R 3 are
considered to have topologicallyequiva-

lent embeddin_s ifthere is a homeomor-
phism from R ° to itselfthat carries C 1
onto C2. (Technically,the situation is

slightlymore complicated than this,but

not enough to be worth mentioning.)

The resulting equivalence classes are
called knot types. The knot type known

as the unknot is the equivalence class of

the unit circlein the xy-plane.Any simple
closedcurve in the knot type ofthe unknot
unknotted.

The problem of classifyingknots isa very
difficultone; much progress has been
made, but much remains to be under-

stood.As an example of the difficultyof
the subject,we cite one result that was

conjectured for a long time, but proved
only a couple ofyears ago:

Theorem-. Two simple closedcurves in

R 3 are ofthe same knot type ifand only if
their complementary regions in R 3 are

toplogicaUyequivalent spaces.

Anything that a simple closed curve can
do in R 3,a closedorbitofa vectorfieldcan

potentiallydo as well. So any knot type
can occur as the knot type ofa closedorbit
in some vectorfield.

C. Linking:

Any collectionoftwo or more disjointsim-
ple closed curves in R 3 may exhibit link-

ing,another extrinsicproperty.Linking is

reallyjust the generalizationof knotting
appropriate to a finiteunion of simple
closedcurves.

Analogous to knotting, we define the col-

lection(CI,.._,Ck} of disjointsimple closed
curves in R ° to be link equivalent to

another such collection (D1_...,Dk} if there
is a homeomorphism of R_ to itself that

carries the union C1U...u Ck onto the
union D 1 u...u D k. (This implies that, in

fact, each C i is carried onto one of the Dj.)
As with knotting, an equivalence class of
linksiscalleda link type.
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Any collection of closed orbits of a vector

field is a collection of disjoint simple
closed curves in R 3, and as such repre-
sonts a link type. Much is known, but
much remains unknown, about what link
types can constitute the sot of source
closed orbits, saddle closed orbits, and
sink closed orbits of a vector field defined
on R3 or a subset of R3.

As an example of the intriguing state of
ignorance of this situation, we mention a
famous unsolved problem known as the
SeifeR conjecture, posed over 40 years
ago:

The Seifert conjecture:

Suppose V is a non-singular smooth (i.e.,
C') vector field defined on a solid torus

(anchor ring) shaped region S in R3. Fur-
ther suppose that V is pointing inward
normal on the torus boundary of S.
Question: Must V necessarily have any
closed orbits at all?

The first examples of such a vector field

that one comes up with usually have a
closed orbit that goes around the hole in
the solid torus S. Surprisingly enough,
there are examples of C _° vector fields sat-
isfying the premises of Seifert's Conjec-
ture, but whose closed orbits do not go
around the hole in S. In addition, the
answer is known to be false if the differen-

tiability condition is relaxed to only C 1 or
C 2

15 Stable Manifolds

If H represents a hyperbolic stationary
point or closed orbit of a vector field, there

are important topological features lurking
nearby: the so-called stable and unstable
manifolds of H.

For convenience we make the
Definition: A critical element of a vec-

tor field V is any stationary point or closed
orbit of V.

The stable manifold is the sot of all points
flowing into H in positive time; the unsta-
ble manifold is the set of all points flowing
into H in negative time.

Of particular interest is how the stable
manifold of one critical element intersects

the unstable manifold of another, or possi-
bly of itself. (It will be left to the reader to

understand why two different stable man-
ifolds cannot intersect each other.)

Stable manifolds of hyperbolic sta-
tionary points:

We now consider another important topo-
logical features of any hyperbolic critical
element: the stable and unstable mani-
folds. Assume there is a vector field V

defined on some open sot U in R2 or R3.

Definition: Let p be a hyperbolic sta-
tionary point of the vector field V. The sta-
ble manifold of the point p, denoted
by WS(p), is the set of points whoso trajec-
tories approach p as t --) oo. The unstable
manifold of the point p, denoted by
WU(p), is defined as the stable manifold of

p for the reversed flow. (In other words, it
is the set of points x whose trajectories
approach p as t --) --¢o.)

Notes on the Topology of Vector Fields and Flows 15 of 21



In allcases the stablemanifold of a hyper-

bolic stationary point is topologically

equivalent to a Euclidean space.This copy
of R is mapped into the domain of the
vector fieldC _ (as long as V is)and one-to-
one.

In 2 dimensions, a source p has a 0-

dimensional stable manifold: the point p
itself.If p isa saddle, then p has a

1-dimensional stable manifold, consisting

of p and the two orbitsalong the negative
eigendirection.If p is a sink, the stable

manifold _is 2-dimensional, consisting at

leastof allthe points sufficientlyclose to

p, and allthe points that eventually flow
intothem.

In $ dimensions, a source p has a
0-dimensional stable manifold. A saddle

of type (2 out, 1 in) has a 1-dimensional

stablemanifold: again itwillbe the point

p and the preciselytwo orbits along the

negative eigendirection.A saddle of type
(1 out, 2 in) has a 2-dimensional stable

manifold (i.e.,itisa surface),consistingof

the point p and the trajectorieswhich get

arbitrarilycloseto the negative real part

eigenplane as t --#oo.Finally,a sink p has
a 3-dimensional stablemanifold.

The term n-manifold in topology means

a space each point of which has a neigh-
borhood that istopologicallyequivalent to

an open neighborhood in Euclidean space
R n. In brief,a manifold isa space that is
"locallyEuclidean" ofa fixeddimension n.

A point is a 0-manifold. A curve is a 1-

manifold. A surface isa 2-manifold.And a

3-manifold, ifitis a subset of R 3, is any
open subset ofR 3.

As the terminology implies, any stable
manifold is, in fact, an n-manifold for
some n. The n in question, as the above

examples suggest, is the number of eigen-
values having negative real part.

It follows from the definition that a sta-
ble or unstable manifold is invariant
under the action of the flow. For this

reason they are sometimes collectively
called _invariant manifolds." However,
since there are many other manifolds that

are invariant under the flow, we prefer not
to use this terminology.

Stable manifolds of hyperbolic closed
orbits:

Definitions: Let C be a hyperbolic
closed orbit of the vector field V. The sta-

ble manifold of C, denoted by Ws(c),
is the set of points x whose trajectories
approach C as t --) co. (Here the word
"approach _ indicates simply that the dis-
tance of _t(x) to C gets arbitrarily small as
t gets large.) The unstable manifold of
C, denoted by Wu(c), is defined as the sta-
ble manifold of C for the reversed flow. (In

other words, it is the set of points x whose
trajectories approach C as t --) -oo.)

The stablemanifold of a hyperbolicclosed

orbit is topologicallyequivalent to either

the ordinary or twisted product of the cir-
cle and a Euclidean space. If the stable

manifold is 2-dimensional, for example,
these are the cylinder and the MSbius

band, respectively.As in the case of a sta-
tionary point,these stable manifolds are

also mapped C I and one-to-one into the
domain ofthe vector field.
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In 3 dlm_naions, a source closed orbit C

has a 1-dimensional stable manifold: just
itself. A saddle closed orbit has a 2-dimen-
sional stable manifold. A sink closed orbit
has a 3-dimensional stable manifold.

Stable manifolds that are 1- or 2-dimen-

sional look like ordinary curves or sur-
faces,respectively,near their associated

dosed orbitor stationarypoint.However,

as they get farther away they get wound

up in the dynamics of other parts of the
vector field,such as other closed orbitsor
stationary points. This can cause them to

be curly beyond belief.

16 Transversality

Suppose that a line liesin a plane in R 3.
An arbitrarilysmall perturbation of the

lineor the plane or both can (and usually

will)change this situation:afterthe per-

turbation, the line will almost certainly
intersectthe plane in one point.

Now suppose instead that a line intersects
a plane in just one point. In this case a

sufficiently small perturbation of the line
and/or plane cannot alter this state of
affairs.

Suppose two manifolds M 1 and M 2 in

Euclidean space R n intersectat a point p.

Let Ti denote the set of all vectors

tangent to M iat p,fori - 1,2.Now sup-
pose that every vector in R n is the
sum of a vector in T 1 and a vector in

T 2. Then M 1 and M 2 are said to intersect

transversely at the point p.

Iffor every point p in MI(_ M2, itis the
case that M 1 and M 2 intersect trans-

verselyat p,then M 1 and M 2 are said sim-
ply to intersect transversely. Note that

if MI_ M 2 isempty, then M 1 and M 2 nec-
essarilyintersecttransversely.

When two manifolds of dimensions dl and

d2 intersect transversely in R n, their

intersectionN is again a manifold. If

dl + d2 < n, then in factN must be empty.
Otherwise, N willbe a manifold of dimen-

sion equal to dl + d2 -n.

When two manifolds intersect trans-

versely, then a sufficiently small per-
turbation of each of them will not

change this fact. Like hyperbolicity,
transversality is a property which will not
be washed away by small errors of mea-
surement.

And as in the case of hyperbolicity,iftwo

manifolds do not intersect transversely,
then they can be made to do so afteran

arbitrarilysmall perturbation.

17 The Non-Wandering Set

For an arbitrary vector field V, we can
define the set of points that _recirculate,"

in a sense that can be made precise.

Definition: We say that a point is wan-
dering if every neighborhood of the point,

aRer flowing for a sufficiently large
amount of time, never intersects itself
again.

Precisely:p is wandering point for V if

there existsa neighborhood N of p and

a T > 0 such that,forallt with Jt_>_T, we
have _t(N) c_ N = _.
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Definition-- The non-wandering set
_(V) of a vector field V consists of all

points that are not wandering.

The non-wandering set must be a
closed set invariant under the action
of the flow.

Any critical element of a vector field

is necessarily contained in its non-
wandering set.

Example: For any r > 0 consider the con-
stant vector field V r on the unit square
0 _<x _< 2_, 0 _<y _< 2_, given by Vr(x, y) -
(1, r2). If we identify opposite sides of this

square via (x,0) ~ (x,2_) and (0,y) ~ (2_,y),
we get a torus with a vector field on it.

Finely we can fill up a solid anchor ring A
in R ° by nesting an infinite family of such
tori of revolution--one for each r satisfy-
ing 0 • r • 1/2---about a core circle. We

inscribe the vector field Vr on the torus of
small radius r. Then the non-wandering
set of this vector field on A is all of A.

Theorem-- Suppose the vector field V is
volume-preserving on a bounded
domain U and has no trajectories exit-
ing its domain. Then _(V) must be all of
U.

Sketch of proof:. Suppose, to the con-

trary, that there is some point p of U and
some neighborhood N of p such that for all

Itl - T > 0, we have N n _t(N) = _.

Now, if there were two numbers sl and s2
with s2 _ sl + T, such that
_bsl(N) n _s2(N) _ _, then by applying
_b_sl to beth sides of this expression we
would obtain N n _s2_sl(N) _ _-contra-
diction.

Thus whenever t increases by at least T,
_t(N) must occupy a new region of U with
equal positive volume, which eventually
will exhaust the necessarily finite volume
of U---contradiction. •

18 Structural Stability

If we are ever going to be able to accu-
rately describe the topology of a real-
world vector field, then the necessarily
inaccurate numerical definition we have
of the vector field must not affect the
topology. We are thus interested in vector

fields which keep their global topology

even after a sufficiently small perturba-
tion.

This is exactly the consideration which led

to our giving prominence to hyperbolicity,
and transversality, except this is not just
on a local scale: it is on a global scale.

Definition: A vector field V on U is called

structurally stable if for any new vector
field V 1 on U that is sufficiently near to V
(in the C 1 sense), there exists a homeo-
morphism H : U --> U which carries the

trajectories of V to those of V 1 and pre-
serves their sense.

In brief, a small enough perturbation of V
results in a new vector field that is topo-
logically equivalent to the old one.

Note: It might be nice to be able to say
that the old and new vector fields were

smoothly equivalent (i.e., topologically
equivalent via a homeomorphism that is
smooth and has smooth inverse). How-

ever, smooth equivalence preserves eigen-
values at stationary points, but
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ei_envalues can be easily changed via a
C_perturbation.

Example: Consider the constant vector
field V(x, y) - (a, b) on R 2. This is structur-
ally stable, as you might guess.

Example: Consider the vector field
given by
V(x,y) - (-y + x(x2+y2-1), x + y(x2+y2-1)).

This vector field has one sink stationary
point, and one and one source closed orbit.

It, too, is structurally stable.

19 Morue-Smale Vector Fields

Morse-Smale vector fields are important
because they are the simplest large class
of structurally stable vector fields.

Definition: A vector field V is called

Morse-Smale if the following hold:
1) V has a finite number of stationary
points and closed orbits, all of which are
hyperbolic.
2) The non-wandering set _(V) is the
union of the closed orbits and the station-
ary points.

3) If H 1 and H2 each represent a closed
orbit or stationary point, then the stable
manifold WS(H1) of H 1 has transverse
intersection with the unstable manifold

WU(H2) of H 2.

Theorem-- Morse-Smale vector fields are
structurally stable.

Theorem-" In 2 dimensions, every struc-
turally stable vector field is Morse-Smale.

It would be convenient if this were also

the case in higher dimensions, but alas,
this is not the case. There exist structur-

ally stable vector fields in dimensions _> 3
whose non-wandering set is the entire
domain (the so-called Anosov flows).

Decomposing Morse-Smale
fields into handles

vector

It would be rather complicated to describe
exactly how all the stationary points and
closed orbits of a Morse-Smale vector field
in n dimensions (think of n= 2 or 3) fit
together. But it is a remarkable fact that
Morse-Smale vector fields can be decom-
posed into simple pieces, each of which
corresponds to a critical element.

Let I)}denote the unit ballin RJ:allpoints

at a distanceof< I from the origin.Let S i
denote the unit circlein R2: allpoints at a

distanceofexactly i from the origin.

For each stationary point with unstable

manifold of dimension k, we willuse one
building block of the form D k × D n-k (a
_handle_). For each closed orbit with

unstable manifold of dimension k, we will
use one buildingblock ofthe form

S 1 X D k-1 X D n-k ( a "round handle_).By

taking the union of these building blocks,

which are allowed to intersectonly along
specifiedparts of theirboundaries, we can

reconstruct--in a topologicalsense--_he
originalMorse-Smale vector field.

The partial ordering

Consider a Morse-Smale vector field V.

Observation 1: Let H i, H2, and H 3 be
critical elements of V. Suppose that

WU(H1) n WS(H2) _: _, and also
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WU(H2) _ WS(H3 ) ¢ _. Then it must also
be true that

WU(H1) n WS(H3) ¢ _. So there is a kind
of transitivity operating here.

Observation 2: Suppose instead that we

have critical elements Hj_ and H2 of V
with WU(H1) n WS(H2) _ f_, and also
WU(H2) n WS(H1) _ O. Then it must fol-
low that H 1 = H 2.

Now let H 1 and H2 be any two critical ele-
ments of a Morse-Smale vector field V.

Then we Shall use the notation H 1 _<H 2 to
mean that WU(H1) n WS(H2) _ O.

From the two observations above, we see
that the condition that _< is a bona fide
partial ordering on the set of critical ele-
ments of V.

Describing a Morse-Smale vector field by
A. labeling the critical elements
according to

1) stationary point or closed orbit
2) dimension of the stable

manifold

3) if closed orbit, whether or not
stable manifold is twisted, and

B. specifiying the pairs HI and H2
for which H1 _<H2

goes a long way towards conveying a very
good description of "what the vector field
V is doing topologically."

(Note, however, that there is still addi-

tional topological information---how the
stable and unstable manifolds intersect

each other--that is not covered in the

above description.)

20 Beyond Morse-Smale Flows

Morse-Smale flows are important to

understand, but they represent one
extreme of a spectrum. The non-wander-
ing set of a Morse-Smale vector field is

concentrated in a finite number of O- and

1-dimensional sets: the stationary points
and closed orbits.

At the opposite extreme are the Anosov
flows mentioned in Section 19. The non-
wandering set of an Anosov flow is the
entire domain of the flow. And there is a

kind of hyperbolicity which applies to this
entire non-wandering set: each point has
a set of stable directions emanating from
it, on which the flow is "contracting," and
a set of unstable directions on which the

flow is "expanding."

And the concept of hyperbolicity can be

extended to include a much wider variety
of sets than manifolds. When this is done

properly, the resulting flows are, like
Morse-Smale flows, structurally stable.
Much progress has been made, but as of
late1992 such so-calledbasic sets are far

from being completely classified.

21 Further Areas of Study

One fiction we have assumed to avoid

complications in these notes, is that the

domain of a vector field must be an open
set in Euclidean space. But in fact, the
natural domain for a vector field is an

arbitrary n-dimensional manifold.

On the one hand, the mathematics isusu-

allymost elegant ifthe domain of a vector

fieldisa compact manifold without bound-

ary,and ifthe vectorfieldistime-indepen-
dent (like the ones we have been

consideringformost ofthese notes).

20 of21 Notes on the Topology ofVector Fields and Flows



But in reality, domains for real-world vec-

tor fields are most commonly manifolds
with boundary, and vector fields found in
the real world are frequently time-depen-
dent.

Much in the same way that the Poincard
map can be used to understand the orbit

structure around a closed orbit, the
dynamics of mappings in general sheds a

great deal of light on the dynamics of

flows,and iswell worthy offurtherstudy.

Very little is known about what kind of
dynamics real-world vector fields tend to

actually have, for example in aerodynam-
ics. Valuable progress could be made by
creating soRware to detecttopologicalfea-

tures of real-world vector fields,and
reporting on the kinds of fieldsencoun-
tered.

Much progress could also be made by
devising new, rough descriptionsof how a

vector fieldflows around, computable with

a modern computer, and which are robust

enough to be accurate despite numerical
imprecision.

We shallsee.
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